Calcium aluminate cement in refractory applications: hydration kinetics of CA and CA2

Sebastian Klaus1, Andreas Buhr1, Dagmar Schmidtmeyer2, Stefan Kuiper3
1Almatis GmbH, Frankfurt, Germany, 2Almatis GmbH, Ludwigshafen, Germany, 3Almatis BV, Rotterdam, The Netherlands

Abstract

Calcium-mono-aluminate (CA or CaAl2O4) and calcium-di-aluminate (CA2 or Ca2Al4O7) are the main phases in iron free high alumina cements (CAC) which are used in demanding refractory applications. It is well known that the hydraulic reactivity of calcium aluminate phases increases with the calcium content of the phase, and therefore CA shows higher reactivity than CA2. Some literature even claims that CA2 would be an almost inert phase with regard to hydraulic reactivity. This study investigates the hydration of pure CA and blends of CA and CA2 using heat flow calorimetry and quantitative in-situ X-ray diffraction (QXRD) during hydration.

Heat flow was calculated by combining the QXRD data obtained during hydration of the mixes together with the standard enthalpies of formation of the participating phases. Comparing the observed heat flow from calorimetry with the heat flow calculated from QXRD data, good conformance could be obtained. The results show a clear pronounced influence of CA2 on hydration of CAC and its heat of hydration during the first 22 hours. After more than 10 hours the hydration of CA2 gives the major contribution to the heat flow.

Introduction

The hydration of calcium-mono-aluminate (CA) is part of several previous investigations and is well known. In common calcium aluminate cements (CAC) CA is the main hydraulic phase responsible for early strength development. Although recent investigations showed that CA reactivity can be increased by its fineness [1], it is worth having a closer look at CA2 - the second main phase in most white CACs. CA2 is known to be weakly hydraulic and was not of great interest in past investigations which looked into the hydration of CAC [2]. The hydration of synthesised CA and CA2 in different ratios together with ZrSiO4 as an inert filler, were investigated with isothermal heat flow calorimetry and in-situ X-ray diffraction. Through a combination of both methods the heat flow contributions of CA and CA2 were evaluated.

Materials and methods

The reactive cement phases CA and CA2 were synthesised from CaCO3 (Sigma-Aldrich) and α-Al2O3 (Alpha Aesar). Inert ZrSiO4 was added as a filler material to simulate a low cement castable concrete and to ensure good reproducibility [3]. Because of the very high specific surface area of the used ZrSiO4 (d50 = 0.2 µm) an actual water to cement ratio between 2.25 and 4.5 resulted.

The investigated model cement mixtures containing different contents (Tab. 1) of CA and CA2 were investigated using heat flow calorimetry (quadruple design [4]) with a water to solid ratio (w/s-ratio) of 0.45. The in-situ XRD measurements were performed on a D8 diffractometer equipped with a Lynx-Eye position sensitive detector (Bruker AXS). For XRD measurements the specimen was covered with a sheet of Kapton to prevent evaporation of water and to minimize CO2 contamination during hydration. For both heat flow calorimetry and in-situ XRD measurements, the homogenised mixtures and the mixing water were equilibrated at 23±0.2°C. For all preparations a mixing time of 1 min was chosen.

<table>
<thead>
<tr>
<th>Synthesized CAC</th>
<th>CA [wt.-%]</th>
<th>CA2 [wt.-%]</th>
<th>ZrSiO4 [wt.-%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAC-10/0</td>
<td>10</td>
<td>-</td>
<td>90</td>
</tr>
<tr>
<td>CAC-10/10</td>
<td>10</td>
<td>10</td>
<td>80</td>
</tr>
<tr>
<td>CAC-15/5</td>
<td>15</td>
<td>5</td>
<td>80</td>
</tr>
</tbody>
</table>

Table 1: Phase composition of investigated mixtures

The XRD data were evaluated with the G-factor method [5, 6] in combination with the Rietveld [7] refinement. The G-factor quantification is an external standard method which has the advantage that single crystalline phases can be quantified independently from other phases and especially from amorphous phases [8]. After O’Connor and Raven [9] the scale factor sj of the phase j is directly proportional to the phase content cj. The density of the phase is described as ρj and the cell volume by Vj. The mass attenuation coefficient μ* of the mixture (dry powder and water) can be evaluated from its known chemical composition [10]. The factor G is a constant reflecting the calibration of the measurement equipment and was frequently determined with a highly crystalline standard material (Si powder).

\[c_j = s_j \cdot \frac{\rho_j \cdot V_j^2 \cdot \mu^*}{G} \]

For further calculations the course of the quantitative X-ray diffraction (QXRD) data was fitted with the application Fityk [11].

Based on the fitted in-situ QXRD data and thermodynamic data from literature, the individual heat flow contributions of the hydration of CA and CA2 was evaluated. For calculation of the heat of reaction (ΔHr) the hydration reactions (1) and (2) were employed by using the enthalpies of formation in Tab. 2. A simultaneous hydration of the hydraulic phases and precipitation of the hydrate phases was assumed.

\[2\text{CA} + 11\text{H} \rightarrow \text{C}_2\text{AH}_8 + \text{AH}_8\text{(am.)} \] (1)
\[2\text{CA}_2 + 17\text{H} \rightarrow \text{C}_2\text{AH}_8 + 3\text{AH}_3\text{(am.)} \] (2)

\[\Delta H_r(\text{CA}) = -693 \text{ J/g} \]
\[\Delta H_r(\text{CA}_2) = -498 \text{ J/g} \]
Table 2: Enthalpies of formation used for calculation of the heat flow

<table>
<thead>
<tr>
<th>Phase</th>
<th>ΔH_{f}° [kJ/mol]</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td>-2323</td>
<td>Coughlin [12]</td>
</tr>
<tr>
<td>CA$_2$</td>
<td>-4023</td>
<td>Hemmingway [13]</td>
</tr>
<tr>
<td>H</td>
<td>-286</td>
<td>Johnson et al. [14]</td>
</tr>
<tr>
<td>C$_2$AH$_8$</td>
<td>-5433</td>
<td>Lothenbach et al. [15], Matschei et al. [16]</td>
</tr>
<tr>
<td>AH$_3$</td>
<td>-2578</td>
<td>Matschei et al. [16]</td>
</tr>
</tbody>
</table>

The calculated heat flow can be determined by combining the derivative established by fitted QXRD data of CA and CA$_2$ (dPhaseXRD) with the heat of reactions:

$$HF = \frac{1}{100} \frac{d\text{PhaseXRD}}{dt} \frac{\Delta H_{f}^{\circ}}{3.6} (-1.45)$$

Results and discussion

The heat flow investigation of the mixtures CAC-10/0 and CAC-10/10 are shown in Figure 1a. The standard deviation for the heat of hydration after 22 h (H_{22h}) was determined from three independently measured sets of data. In each case the plotted curves are the averaged curves. Both mixtures are characterised by an induction period between 0.5 and 1.5 h. The end of the induction period introduces the starting point of the main reaction. The maximum for both mixtures of 6 mW/g is very comparable. For the mixture without CA$_2$ (CAC-10/0), the heat flow after reaching the maximum, decreases down to the baseline. After 14 h the heat of hydration reaches a plateau at 67 J/g indicating the end of hydration. This compares with the mixture containing 10 wt.-% CA$_2$, which still releases a heat flow of 0.4 mW/g after 22 h. With 10 wt.-% CA$_2$ the heat of hydration is still increasing and has reached a value of 97 J/g after 22 h. As a consequence only through the addition of CA$_2$, a surplus of 30 J/g (45%) was achieved after a hydration time of 22 h.

The comparison of heat flow in CAC-10/10 and CAC-15/5 is shown in Figure 1b for a longer hydration time of 45 h. The mixture with 15 wt.-% CA and 5 wt.-% CA$_2$ (CAC-15/5) exhibits a much more pronounced main reaction than does the mixture with 10 wt.-% CA, with a significant maximum heat flow of 10.6 mW/g. After approximately 7 h the heat of hydration curve of CAC-15/5 exhibits a lower gradient than does the curve of CAC-10/10. After 33 h, however, the heat of hydration curves intersect one another. Finally CAC-10/10, the mix with lower CA content surprisingly releases more heat – 121 J/g after 45 h. Furthermore, the heat of hydration curves for both mixtures show that even after 45 h no plateau could be reached. This indicates that even after 45 h there is still some hydration reaction which is producing heat.
The G-factor quantification of CA and CA₂ during hydration of the mixture CAC-10/10 is shown in Figure 2a. After 1.75 h the main reaction starts with fast dissolution of CA. At the maximum of the main reaction, hydration of CA₁ is introduced after 4.5 h. The hydration rate of CA decreases after the main reaction and ceases after approximately 10 h. 2.5 wt.-% CA still remains after 22 h. In contrast, the dissolution of CA₂ proceeds continuously after the end of the measurement time.

Figure 2b shows the heat flow calculated from the QXRD data. The calculated heat flow for CA hydration according to reaction (1) starts after 1.75 h, at the same time as the measured heat flow. The maximum of the calculated heat flow of 5.5 mW/g is slightly lower than for the measured maximum. After the maximum, the calculated heat flow decreases and reaches the baseline after 10 h exhibiting no more heat for the rest of the measurement. The heat flow as calculated for hydration of CA according to reaction (2) starts after the maximum of the CA hydration. As dissolution of CA₁ still occurs after 22 h, the heat flow is calculated to 0.3 mW/g at the end of the measurement.

Figure 3 shows the calculation of heat flow for the mixture with higher CA content. This is 15 wt.-% CA, 5 wt.-% CA₂, and 80 wt.-% ZrSiO₄ for a w/s of 0.45 at T = 23°C. The sum of the heat flow contributions based on the hydration reactions of CA and CA₁ is represented by the solid heat flow curve. The dashed line shows the heat flow as measured by the heat flow calorimetry.

Due to higher CA concentration the heat flow maximum after 2 h of 10.5 mW/g is more pronounced than for the mixture CAC-10/10 (compare Figure 2b). It then decreases slowly, finally reaching the baseline after approximately 16 h. Since the mixture CAC-15/5 contains only 5 wt.-% CA₂, the calculated heat flow based on the hydration reaction of CA₂ is quite low.

Figure 2 and Figure 3 underline the different behaviour in hydration kinetics of CA and CA₂. CA dissolves very rapidly once the main reaction has begun. The hydration of CA₂, on the other hand, is predominantly characterised by a very slow and lengthy reaction. Based on separate investigations it is known that that CA₂ is completely dissolved after a few days.

The crystal structures of the hydrate phases C₂AH₈ and C₂AH₇.₅ are not yet sufficiently determined with regard to classical Rietveld refinement. For this reason hkl phases were used to fit the XRD pattern of C₂AH₈ and C₂AH₇.₅. At 23°C aluminiumhydroxide is predominantly formed as AH₃-gel. For this reason AH₃ was not detectable with XRD.

The relative phase development of C₂AH₈ and C₂AH₇.₅ during the hydration of mixture CAC-10/10 is shown in Figure 4. The normalised scale factor does not show any qualitative relationship but gives a hint on the phase kinetics. Precipitation of C₂AH₈ occurs as soon as the main reaction and CA dissolution has started. The amount of C₂AH₈ increases and reaches a maximum. After approximately 5 h of hydration the amount of C₂AH₈ decreases slowly, C₂AH₇.₅ is formed together with C₂AH₃ whereby the precipitation rate of C₂AH₇.₅ increases as soon as the amount of C₂AH₈ has reached its maximum. It is still in discussion whether C₂AH₇.₅ is formed through decomposition of C₂AH₈ or directly from solution. However, the formation of C₂AH₇.₅ can be supposed to contribute additional heat during CAC hydration reaction.

In Figure 2b and Figure 3 it can be noticed that the calculated heat flow is underdetermined during the deceleration period. As the formation of C₂AH₇.₅ was not taken into account during heat flow calculations, it can be assumed that the missing heat has its origin in C₂AH₇.₅ formation or conversion from C₂AH₇.₅ to C₂AH₈.

Practical relevance

In refractory applications, the assessment of strength development is often related to the main reaction (EXO max). However, the investigations show that considerable hydration takes place after the main reaction due to the CA₂ in CAC. Figure 5 shows the EXO curve and the strength development of a low cement tabular alumina vibration castable with dispersing alumina ADS/W after curing at 20°C for 5 h (EXO max), 24, 48, and 72 h. The cold crushing strength (CCS) increases from 26 MPa at 24 h to 35 MPa at 72 h (+ 35 %). This proves the significant contribution of CA₂ to the strength development if the curing time is long enough.
Frequently performed on site installations may not permit such longer curing times. However for the production of large pre-cast shapes such as impact pads, steel ladle bottoms, or EAF delta sections a longer curing time would contribute to higher green strength. It would also reduce the risk of micro-cracking or more severe damage of the large pieces during de-moulding and handling.

Summary

A hydration model describing the different heat contributions is shown in Figure 6. It is very clear that once the hydration of CA has come to an end, remaining CA quantities in the paste do not contribute to further heat development. Additional heat is only developed through the ongoing hydration reaction of CA₂ and the phase conversion from C₂AH₈ to C₂AH₇.₅.

It is shown by investigation of pure CA, and mixes of CA and CA₂ that the first reaction of CAC hydration is mainly influenced by the hydration of CA. The hydration of CA₂ begins as soon as the hydration of CA has reached its maximum rate. The dissolution of CA is accompanied by the precipitation of amorphous AHₓ together with C₂AH₈ and C₂AH₇.₅. The kinetics of CA₂ hydration is much slower than that for CA. The results very clearly show a pronounced influence of CA₂ on the hydration of CAC and its heat of hydration during the first 22 hours. After more than 10 h the CA₂ hydration gives the major heat contributions when compared to other reactions. It is obvious that the contribution of CA₂ to strength development cannot be neglected in refractory applications and that longer curing times would be beneficial especially for the production of large pre-cast shapes.

Bibliography

